797 research outputs found

    Tracking autophagy during proliferation and differentiation of trypanosoma brucei

    Get PDF
    Autophagy is a lysosome-dependent degradation mechanism that sequesters target cargo into autophagosomal vesicles. The Trypanosoma brucei genome contains apparent orthologues of several autophagy-related proteins including an ATG8 family. These ubiquitin-like proteins are required for autophagosome membrane formation, but our studies show that ATG8.3 is atypical. To investigate the function of other ATG proteins, RNAi compatible T. brucei were modified to function as autophagy reporter lines by expressing only either YFP-ATG8.1 or YFP-ATG8.2. In the insect procyclic lifecycle stage, independent RNAi down-regulation of ATG3 or ATG7 generated autophagy-defective mutants and confirmed a pro-survival role for autophagy in the procyclic form nutrient starvation response. Similarly, RNAi depletion of ATG5 or ATG7 in the bloodstream form disrupted autophagy, but did not impede proliferation. Further characterisation showed bloodstream form autophagy mutants retain the capacity to undergo the complex cellular remodelling that occurs during differentiation to the procyclic form and are equally susceptible to dihydroxyacetone-induced cell death as wild type parasites, not supporting a role for autophagy in this cell death mechanism. The RNAi reporter system developed, which also identified TOR1 as a negative regulator controlling YFP-ATG8.2 but not YFP-ATG8.1 autophagosome formation, will enable further targeted analysis of the mechanisms and function of autophagy in the medically relevant bloodstream form of T. brucei

    The SNARE protein family of Leishmania major

    Get PDF
    BACKGROUND: Leishmania major is a protozoan parasite with a highly polarised cell shape that depends upon endocytosis and exocytosis from a single area of the plasma membrane, the flagellar pocket. SNAREs (soluble N-ethylmaleimide-sensitive factor adaptor proteins receptors) are key components of the intracellular vesicle-mediated transports that take place in all eukaryotic cells. They are membrane-bound proteins that facilitate the docking and fusion of vesicles with organelles. The recent availability of the genome sequence of L. major has allowed us to assess the complement of SNAREs in the parasite and to investigate their location in comparison with metazoans. RESULTS: Bioinformatic searches of the L. major genome revealed a total of 27 SNARE domain-containing proteins that could be classified in structural groups by phylogenetic analysis. 25 of these possessed the expected features of functional SNAREs, whereas the other two could represent kinetoplastid-specific proteins that might act as regulators of the SNARE complexes. Other differences of Leishmania SNAREs were the absence of double SNARE domain-containing and of the brevin classes of these proteins. Members of the Qa group of Leishmania SNAREs showed differential expressions profiles in the two main parasite forms whereas their GFP-tagging and in vivo expression revealed localisations in the Golgi, late endosome/lysosome and near the flagellar pocket. CONCLUSION: The early-branching eukaryote L. major apparently possess a SNARE repertoire that equals in number the one of metazoans such as Drosophila, showing that the machinery for vesicle fusion is well conserved throughout the eukaryotes. However, the analysis revealed the absence of certain types of SNAREs found in metazoans and yeast, while suggesting the presence of original SNAREs as well as others with unusual localisation. This study also presented the intracellular localisation of the L. major SNAREs from the Qa group and reveals that these proteins could be useful as organelle markers in this parasitic protozoon

    Bloodstream form trypanosoma brucei depend upon multiple metacaspases associated with RAB11-positive endosomes

    Get PDF
    Trypanosoma brucei possesses five metacaspase genes. Of these, MCA2 and MCA3 are expressed only in the mammalian bloodstream form of the parasite, whereas MCA5 is expressed also in the insect procyclic form. Triple RNAi analysis showed MCA2, MCA3 and MCA5 to be essential in the bloodstream form, with parasites accumulating pre-cytokinesis. Nevertheless, triple null mutants (Δmca2/3Δmca5) could be isolated after sequential gene deletion. Thereafter, Δmca2/3Δmca5 mutants were found to grow well both in vitro in culture and in vivo in mice. We hypothesise that metacaspases are essential for bloodstream form parasites, but they have overlapping functions and their progressive loss can be compensated for by activation of alternative biochemical pathways. Analysis of Δmca2/3Δmca5 revealed no greater or lesser susceptibility to stresses reported to initiate programmed cell death, such as treatment with prostaglandin D2. The metacaspases were found to colocalise with RAB11, a marker for recycling endosomes. However, variant surface glycoprotein (VSG) recycling processes and the degradation of internalised anti-VSG antibody were found to occur similarly in wild type, Δmca2/3Δmca5 and triple RNAi induced parasites. Thus, the data provide no support for the direct involvement of T. brucei metacaspases in programmed cell death and suggest that the proteins have a function associated with RAB11 vesicles that is independent of known recycling processes of RAB11-positive endosomes

    Metabolomic profiling and stable isotope labelling of Trichomonas vaginalis and Tritrichomonas foetus reveal major differences in amino acid metabolism including the production of 2-hydroxyisocaproic acid, cystathionine and S-methylcysteine

    Get PDF
    Trichomonas vaginalis and Tritrichomonas foetus are pathogens that parasitise, respectively, human and bovine urogenital tracts causing disease. Using LC-MS, reference metabolomic profiles were obtained for both species and stable isotope labelling with D-[U-13C6] glucose was used to analyse central carbon metabolism. This facilitated a comparison of the metabolic pathways of T. vaginalis and T. foetus, extending earlier targeted biochemical studies. 43 metabolites, whose identities were confirmed by comparison of their retention times with authentic standards, occurred at more than 3-fold difference in peak intensity between T. vaginalis and T. foetus. 18 metabolites that were removed from or released into the medium during growth also showed more than 3-fold difference between the species. Major differences were observed in cysteine and methionine metabolism in which homocysteine, produced as a bi-product of trans-methylation, is catabolised by methionine γ-lyase in T. vaginalis but converted to cystathionine in T. foetus. Both species synthesise methylthioadenosine by an unusual mechanism, but it is not used as a substrate for methionine recycling. T. vaginalis also produces and exports high levels of S-methylcysteine, whereas only negligible levels were found in T. foetus which maintains significantly higher intracellular levels of cysteine. 13C-labeling confirmed that both cysteine and S-methylcysteine are synthesised by T. vaginalis; S-methylcysteine can be generated by recombinant T. vaginalis cysteine synthase using phosphoserine and methanethiol. T. foetus contained higher levels of ornithine and citrulline than T. vaginalis and exported increased levels of putrescine, suggesting greater flux through the arginine dihydrolase pathway. T. vaginalis produced and exported hydroxy acid derivatives of certain amino acids, particularly 2-hydroxyisocaproic acid derived from leucine, whereas negligible levels of these metabolites occurred in T. foetus

    Characterization of a multi-copy gene for a major stage-specific cysteine proteinase of Leishmania mexicana

    Get PDF
    AbstractImcpb, a gene from Leishmania mexicana that encodes a major cysteine proteinase in the parasite, has been cloned and sequenced. LmCPb is related more to cysteine proteinases from Trypanosoma brucel and Trypanosoma cruzi than to a previously characterized cysteine proteinase, LmCPa, of L. mexicana. It contains a long C-terminal extension characteristic of similar enzymes of T. brucei and T. cruzi. The gene is multi-copy and tandemly arranged. Imcpb RNA levels are developmentally regulated with steady state levels being high in amastigotes, low in metacyclic promastigotes and undetectable in multiplicative promastigotes. This variation correlates with and may account for the stage-specific expression of LmCPb enzyme activity

    The influence of defined ante-mortem stressors on the early post-mortem biochemical processes in the abdominal muscle of the Norway lobster, Nephrops norvegicus (Linnaeus, 1758)

    Get PDF
    The effects of four different ante-mortem stressors (exercise, emersion, starvation and a patent infection with the parasite Hematodinium sp.) on post-mortem processes have been investigated in the abdominal muscle of Norway lobster Nephrops norvegicus by measuring changes in the pH, the levels of glycogen, l-lactate, arginine phosphate, ATP, ADP, AMP, IMP, HxR, Hx and the adenylate energy charge (AEC) over a time course of 24 h with samples being taken at 0, 3, 6, 12 and 24 h. The acute stresses of intense exercise and 2 h emersion resulted in a premature onset of anaerobic glycolysis, leading both to an enhanced glycogen depletion rate and an early accumulation of l-lactate. The chronic stressors, starvation and parasite infection, resulted in a complete ante-mortem depletion of muscle glycogen and consequently the failure of post-mortem glycolytic fermentation. Post-mortem pH and ATP inter-conversion were significantly altered in chronically stressed animals. Ante-mortem, a rapid, almost complete depletion of arginine phosphate was observed in all stress groups. The AEC was altered significantly by all stresses, indicating a strong energy demand. The findings suggest that ante-mortem stressors strongly influence the post-mortem biochemical processes. The laboratory-based results are compared to 'field' data and effects on post-harvest product quality are discussed

    A comparison of variate pre-selection methods for use in partial least squares regression: a case study on NIR spectroscopy applied to monitoring beer fermentation

    Get PDF
    This work investigates four methods of selecting variates from near-infrared (NIR) spectra for use in partial least squares (PLS) regression models to predict biomass and chemical changes during beer fermentation. The fermentation parameters studied were ethanol concentration, specific gravity (SG), optical density (OD) and dry cell weight (DCW). The four selection methods investigated were: Simple, where a fingerprint region is chosen manually; CovProc, a covariance procedure where variates are introduced based on the magnitude of the 1st PLS vector coefficients; CovProc-SavGo, a modification to CovProc where the window size of a Savitzky-Golay filter applied to the spectra is also optimised; and Genetic Algorithm (GA), where variates are selected based on the frequency of appearance in 8-variate multiple linear regression models found from repeated execution of the GA routine. The analysis found that all four methods produced good predictive models. The GA approach produced the lowest standard error in prediction (SEP) based on leave-one-out cross validation (LOO-CV), although this advantage was not reflected in the standard error in validation values, SEV, where all four models performed comparably. From this work, we would recommend using the Simple approach if a suitable fingerprint region can be identified, and using CovProc otherwise

    Distinct roles in autophagy and importance in infectivity of the two ATG4 cysteine peptidases of leishmania major

    Get PDF
    Macroautophagy in Leishmania, which is important for the cellular remodeling required during differentiation, relies upon the hydrolytic activity of two ATG4 cysteine peptidases (ATG4.1 and ATG4.2). We have investigated the individual contributions of each ATG4 to Leishmania major by generating individual gene deletion mutants (Δatg4.1 and Δatg4.2); double mutants could not be generated, indicating that ATG4 activity is required for parasite viability. Both mutants were viable as promastigotes and infected macrophages in vitro and mice, but Δatg4.2 survived poorly irrespective of infection with promastigotes or amastigotes, whereas this was the case only when promastigotes of Δatg4.1 were used. Promastigotes of Δatg4.2 but not Δatg4.1 were more susceptible than wild type promastigotes to starvation and oxidative stresses, which correlated with increased reactive oxygen species levels and oxidatively damaged proteins in the cells as well as impaired mitochondrial function. The antioxidant N-acetylcysteine reversed this phenotype, reducing both basal and induced autophagy and restoring mitochondrial function, indicating a relationship between reactive oxygen species levels and autophagy. Deletion of ATG4.2 had a more dramatic effect upon autophagy than did deletion of ATG4.1. This phenotype is consistent with a reduced efficiency in the autophagic process in Δatg4.2, possibly due to ATG4.2 having a key role in removal of ATG8 from mature autophagosomes and thus facilitating delivery to the lysosomal network. These findings show that there is a level of functional redundancy between the two ATG4s, and that ATG4.2 appears to be the more important. Moreover, the low infectivity of Δatg4.2 demonstrates that autophagy is important for the virulence of the parasite

    Metabolomics to unveil and understand phenotypic diversity between pathogen populations

    Get PDF
    Visceral leishmaniasis is caused by a parasite called Leishmania donovani, which every year infects about half a million people and claims several thousand lives. Existing treatments are now becoming less effective due to the emergence of drug resistance. Improving our understanding of the mechanisms used by the parasite to adapt to drugs and achieve resistance is crucial for developing future treatment strategies. Unfortunately, the biological mechanism whereby Leishmania acquires drug resistance is poorly understood. Recent years have brought new technologies with the potential to increase greatly our understanding of drug resistance mechanisms. The latest mass spectrometry techniques allow the metabolome of parasites to be studied rapidly and in great detail. We have applied this approach to determine the metabolome of drug-sensitive and drug-resistant parasites isolated from patients with leishmaniasis. The data show that there are wholesale differences between the isolates and that the membrane composition has been drastically modified in drug-resistant parasites compared with drug-sensitive parasites. Our findings demonstrate that untargeted metabolomics has great potential to identify major metabolic differences between closely related parasite strains and thus should find many applications in distinguishing parasite phenotypes of clinical relevance
    corecore